4.7 Article

Novel insights into the role of leaf in the cutting process of Camellia sinensis using physiological, biochemical and transcriptome analyses

期刊

TREE PHYSIOLOGY
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpad101

关键词

Camellia sinensis; cutting; leaf; phytohormones; rooting

类别

向作者/读者索取更多资源

This study demonstrates the necessity of leaf and light during cuttage by conducting experiments on 24 tea cultivars. Lower net photosynthesis rate is found to promote rooting. Leaf transcriptome analysis of an easy-to-root cultivar reveals differentially expressed genes involved in carbohydrate metabolism, signal transduction, metabolite biosynthesis and transportation during the rooting process.
Cuttage is the preferred approach for rapid propagation of many species including tea plant (Camellia sinensis). Leaf serves as a key part of nodal cutting, but there is a lack of systematic research on its role in the cutting process. In this study, 24 tea cultivars were employed to prove the necessity of leaf and light during cuttage. Further leaf physiological parameters found that lower net photosynthesis rate probably promoted rooting. Phytohormone content detection showed that auxin content and composition pattern were related to rooting ability. Leaf transcriptome analyses of cuttings from a representative easy-to-root cultivar (cv. Echa 10) revealed that genes involved in carbohydrate metabolism, signal transduction, metabolite biosynthesis and transportation were differentially expressed during the rooting process. CsTSA1, CsYUC10, CsAUX1s, CsPIN3 and CsPIN5 were selected as the candidate genes, which possibly regulate the rooting of nodal cuttings. These results illustrate the necessity of the leaf in cuttage and provide molecular evidence that leaf is an important place for signal transduction, metabolite synthesis and transport during the rooting process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据