4.6 Article

A spiropyran-decorated nanocoating for dynamically regulating bacteria/cell adhesion and detachment

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tb01719

关键词

-

向作者/读者索取更多资源

Microorganism adhesion and contamination of biomaterial can cause failure of biomedical devices. A self-assembled biomaterial nanocoating using acidity and photoregulated nanoparticles was developed to regulate adhesion and detachment of bacteria or cells. The coating showed reversible ability even after 8 cycles, making it a promising agent for biomedical device development, especially for medical coatings.
Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. The coating was formed by coating a solution of spiropyran-conjugated nanoparticles around the surface of a silica gel followed by curing and drying at 60 & DEG;C for 30 min. Importantly, efficient adhesion-and-detachment of bacteria or cells could be controlled even after 8 cycles owing to the excellent acidity- and light-switched ability. Collectively, this well-defined self-assembled nanocoating as a dynamical and reversible agent provides promising insight for the development of biomedical devices, especially for biomaterial medical coatings. A facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据