4.8 Article

Coke resistant NiCo/CeO2 catalysts for dry reforming of methane derived from core@shell Ni@Co nanoparticles

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 339, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2023.123152

关键词

Dry reforming of methane; Nanoparticles; Core@shell Ni@Co; CeO2; Coking

向作者/读者索取更多资源

Core@shell Ni@Co and bimetallic alloyed Ni-Co nanoparticles with controlled Co/Ni compositions were supported on CeO2 for catalytic dry reforming of methane (DRM). Increasing the Co/Ni ratio reduced coke deposition while maintaining catalytic activity. However, a Co/Ni ratio > 1 caused a rapid decrease in activity.
Core@shell Ni@Co and bimetallic alloyed Ni-Co nanoparticles with controlled Co/Ni compositions were prepared and supported on CeO2 to investigate their performance in catalytic dry reforming of methane (DRM) and occurrence of sintering and coking. Increasing the Co/Ni ratio significantly reduced coke deposition while maintaining catalytic activity for DRM. However, a Co/Ni ratio > 1 caused a rapid decrease in activity. The Ni@Co-1/CeO2 catalyst exhibited the highest CH4 and CO2 conversions, with long-term stability during DRM at 800 ? for 100 h. The initial core@shell structure of the Ni@Co-1/CeO2 catalyst transformed to a homogeneous alloy after DRM at 800 C for 10 h, losing its Co shell. However, the bimetallic alloyed Ni-Co-1/CeO2 catalyst transformed into a non-uniform alloy rich in Co on the surface after DRM for 10 h. As the elemental distribution of the NPs becomes more homogeneous, Ni-Co-1/CeO2 exhibit similar catalytic activity to Ni@Co-1/CeO2 after 50 h. The oxygen vacancies on the CeO2 surface provided oxygen atoms to the Ni surface, removing carbon species deposited and releasing CO. Therefore, Ni@Co-1/CeO2 catalyst provides excellent catalytic activity and stability due to the rapid formation of a homogenous alloy and the synergistic effect of Co and CeO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据