4.6 Article

Constructing the Cu2O@Au/Cu2O integrated heterostructure cooperated with LSPR effect for enhanced photocatalytic performance via a three-in-one synergy

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2023.115100

关键词

Cuprous oxide; Integrated heterostructure; LSPR effect; Three-in-one Synergy; Hydrogen production

向作者/读者索取更多资源

This study designed an integrated structure of Cu2O@Au/Cu2O heterostructure particles, which achieved significantly enhanced photocatalytic performance by simultaneously considering the integrated structural characteristics and localized surface plasmon resonance (LSPR) effect. Experimental characterization and theoretical simulation confirmed the three-in-one synergy of the integrated heterostructure, including the LSPR effect of Au nanoparticles, the light scattering based on core-shell heterostructure, and the effective charge separation based on inter-embedded heterostructure. The concept of integrated heterostructure cooperated with LSPR effect provides a new strategy for designing future catalysts.
As a promising strategy, Localized surface plasmon resonance (LSPR) is applied to improve the efficiency of metal-semiconductor photocatalysts. However, current research have focused on maximizing the LSPR effect in a single structure, rather than the simultaneous consideration of the synergy between integrated structural characteristics and LSPR effect. Here we designed an integrated structure of Cu2O@Au/Cu2O heterostructure particles (HPs), which were provided with both the core-shell heterostructure (Cu2O@Au) and the inter-embedded heterostructure (Au/Cu2O). Cu2O@Au/Cu2O HPs showed much enhanced photocatalytic performance than pure Cu2O and other heterostructures with single structural characteristics. Experimental characterization and theoretical simulation confirm that the integrated heterostructure follows the three-in-one synergy, which include the LSPR effect of Au nanoparticles, the light scattering based on core-shell heterostructure, and the effective charge separation based on inter-embedded heterostructure. The concept of integrated heterostructure cooperated with LSPR effect provides a new strategy to design future catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据