4.6 Article

Simpler and highly sensitive enzyme-free sensing of urea via NiO nanostructures modified electrode

期刊

RSC ADVANCES
卷 6, 期 45, 页码 39001-39006

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra00521g

关键词

-

资金

  1. Deanship of Scientific Research group at King Saud University by Prolific Research Group [PRG-1437-30]

向作者/读者索取更多资源

In this study, NiO nanostructures were synthesized via a hydrothermal process using ascorbic acid as doping agent in the presence of ammonia. As prepared nanostructures were characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, and thermogravimetric analysis (TGA). These analyses showed that these nanostructures are in the form of cotton-like porous material and crystalline in nature. Furthermore, the average size of these NiO crystallites was estimated to be 3.8 nm. These nanostructures were investigated for their potential to be a highly sensitive and selective enzyme-free sensor for detection of urea after immobilizing on a glassy carbon electrode (GCE) using 0.1% Nafion as binder. The response of this as developed amperometric sensor was linear in the range of 100-1100 mu M urea with a R-2 value of 0.990 and limit of detection (LOD) of 10 mu M. The sensor responded negligibly to various interfering species including glucose, uric acid, and ascorbic acid. This sensor was applied successfully for determining urea in real water samples such as mineral water, tap water, and river water with acceptable recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据