4.6 Article

Removal of endocrine disruptor di-(2-ethylhexyl)phthalate by modified polythiophene-coated magnetic nanoparticles: characterization, adsorption isotherm, kinetic study, thermodynamics

期刊

RSC ADVANCES
卷 6, 期 50, 页码 44655-44667

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra04172h

关键词

-

资金

  1. Institute of Research Management and Monitoring University of Malaya [PG044-2012B]
  2. Ministry of Higher Education [HIR/MOHE/SC/F0031]
  3. Universiti Teknologi MARA
  4. Ministry of Higher Education Malaysia

向作者/读者索取更多资源

Core-shell magnetic nanoparticles have received significant attention and are actively explored due to their prospective applications. In the current study, superparamagnetic nanosorbent poly(phenyl(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine)/Fe3O4 nanoparticles (Fe3O4@P3TArH) was successfully synthesized via a simplistic method for the enhanced extraction of a potent endocrine disruptor, di-(2-ethylhexyl) phthalate (DEHP). The synthesized materials were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The extraction efficiencies of the synthesized sorbent materials were evaluated by monitoring the extraction of DEHP from aqueous solution. Removal of DEHP using Fe3O4@P3TArh was found to be pH and temperature dependent with a maximum adsorption capacity found to be at 298.15 K at pH 7 and the adsorption kinetics followed a pseudo second-order kinetics model. Thermodynamic studies revealed that adsorption occurred heterogeneously on the adsorption sites, and adsorption of di-(2-ethylhexyl) phthalate onto Fe3O4@ P3TArh was found to be spontaneous, feasible, ordered, and exothermic. The activation energy was determined to be -40.6 kJ mol(-1), which indicated the adsorption process was physisorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据