4.6 Article

Nanocrystalline FeOClx grafted MCM-41 as active mesoporous catalyst for the solvent-free multi-condensation reaction

期刊

RSC ADVANCES
卷 6, 期 73, 页码 69334-69342

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra14736d

关键词

-

资金

  1. National Academy of Sciences (India)

向作者/读者索取更多资源

Thermal condensation reaction between the surface silanol groups of MCM-41 and FeCl3 led to the formation of nanocrystalline iron oxychloride (FeOCl) grafted MCM-41 and its role as an active Lewis acid site for the solvent-free multi-condensation reaction has been demonstrated. TGA/TGA-FTIR-GC-MS analysis of the FeCl3/MCM-41 material showed the release of HCl molecules as a result of the condensation reaction and the formation of FeOClx species on the surface of MCM-41. Solid state Si-29 NMR and HT-XRD analysis of these materials clearly showed the grafting of FeOClx species on the surface of MCM-41 and nanocrystalline FeOClx formation during the thermal condensation reaction. HRTEM mapping and EDX mapping further confirm the nanocrystalline iron oxychloride species formation and its uniform distribution on the surface of MCM-41. It was further demonstrated that these materials were found to be highly active towards solvent-free one pot multi condensation reaction between napthols, amides and aldehydes to produce pharmaceutically active alkylnapthols. The role of calcination temperature was demonstrated to be a key factor in the formation and distribution of FeOClx species, therefore the catalytic activity of these materials vary as a function of calcination temperature. XPS analysis of these materials confirmed the presence of FeOClx species and its role as an active acid site for the multi-condensation reaction was proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据