4.6 Article

High catalytic activity for CO oxidation on single Fe atom stabilized in graphene vacancies

期刊

RSC ADVANCES
卷 6, 期 96, 页码 93985-93996

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra14476d

关键词

-

资金

  1. National Natural Science Foundation of China [U1404109, 11504334, 51401078, U1504108]
  2. Application Foundation and Advanced Technology Research Program of Henan Province [152300410167]

向作者/读者索取更多资源

Inspired by the recently discovered dynamics of single Fe atoms in graphene vacancies, we systemically examined the stable configurations, electronic structures, and catalytic activities of Fe-atom-embedded graphene substrates (including monovacancy graphene (MG) and divacancy graphene (DG)) by using first-principles calculations. We found that the doped Fe on the MG sheet (Fe/MG) is more stable than that on the DG sheet (Fe/DG). Doping with Fe atoms provides more transferred electrons to fill the vacancy defects of graphene and allows it to exhibit a more positive charge, which effectively regulates O-2 and CO adsorption. Also, the degree of interactions between the reactants and substrates are connected to the reaction pathways and energy barriers. For the Fe/MG sheet, the low coadsorption energy of gas molecules can promote the catalytic reaction through the Langmuir-Hinshelwood (LH) mechanism. In comparison, the initial step for CO oxidation on the Fe/DG sheet is through the Eley-Rideal (ER) mechanism, which is an energetically more favorable process. Moreover, the more stable Fe/MG sheet is a much more efficient catalyst for CO oxidation at low temperature, because the sequential reaction processes (LH and ER) have low enough energy barriers. These results provide valuable guidance on selecting the metal dopant in graphene materials to design effective atomic-scale catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据