4.3 Article

Adipocyte miR-200b/a/429 ablation in mice leads to high-fat-diet-induced obesity

期刊

ONCOTARGET
卷 7, 期 42, 页码 67796-67807

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.12080

关键词

miR-200b/a/429; insulin resistance; high-fat-diet; knockout; adipose tissue; Pathology Section

资金

  1. National Natural Science Foundation of China [31330074, 31101688]
  2. State Key Development Program for Basic Research of China [2015CB943100]
  3. Agricultural Science and Technology Innovation program [ASTIP-IAS05]
  4. Elite Youth Program of the Chinese Academy of Agricultural Sciences

向作者/读者索取更多资源

Growing evidence demonstrates the important role of microRNAs (miRs) in regulating adipogenesis, obesity and insulin resistance. The miR-200b/a/429 cluster has been functionally characterized in mammalian reproduction; however, the potential role of the miR-200 family in adipocytes is poorly understood. The aim of our study was to investigate the physiological function of miR-200b/a/429 in the regulation of whole-body metabolism in terms of the activities and targets of this cluster in adipocytes. We generated adipocyte-specific miR-200b/a/429 knockout (ASKO) mice using a Cre-loxP system in which Cre expression was driven by the aP2 promoter. The ASKO and wild type (WT) littermate were fed a chow diet (CD) or high-fat-diet (HFD), and changes in body composition, metabolic parameters, energy homeostasis, glucose tolerance and insulin sensitivity were analyzed. The miR-200b/a/429 putative target genes were predicted and validated via luciferase reporter assays. We found that the HFD-fed ASKO mice gradually gained more body weight than the WT mice due to the increased adiposity. Decreased glucose tolerance and insulin sensitivity were also observed in the HFD-fed ASKO mice. Notably, the down-regulation of lipolysis-related genes and the decreased response to CL-316,243 stimulation in the HFD-fed ASKO mice suggested that these animals exhibited impaired lipolysis. In addition, the HFD-fed ASKO mice displayed impaired energy expenditure, indicating that the miR-200b/a/429 cluster is essential for developing adaptive responses to stressors such as HFD. For the first time, our studies demonstrated the essential role of miR-200b/a/429 in adipocytes in the regulation of HFD-induced whole-body metabolic changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据