4.7 Article

Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries

期刊

NPG ASIA MATERIALS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/am.2016.61

关键词

-

资金

  1. Institute for Basic Science, Republic of Korea [IBS-R006-G1]
  2. National Research Foundation of Korea - Ministry of Science, ICT Future, Korea [2011-0017587, 2011-0021972]
  3. Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - US Department of Energy, Office of Science, Basic Energy Sciences

向作者/读者索取更多资源

Lithium-sulfur (Li-S) batteries are expected to overcome the limit of current energy storage devices by delivering high specific energy with low material cost. However, the potential of Li-S batteries has not yet been realized because of several technical barriers. Poor electrochemical performance is mainly attributed to the low electrical conductivity of the fully charged and discharged species, the irreversible loss of polysulfide anions and the decrease in the number of electrochemically active reaction sites during battery operation. Here, we report that the introduction of graphene quantum dots (GQDs) into the sulfur cathode dramatically enhanced sulfur/sulfide utilization, yielding high performance. In addition, the GQDs induced structural integrity of the sulfur-carbon electrode composite by oxygen-rich functional groups. This hierarchical architecture enabled fast charge transfer while minimizing the loss of lithium polysulfides, which is attributed to the physicochemical properties of GQDs. The mechanisms through which excellent cycling and rate performance are achieved were thoroughly studied by analyzing capacity versus voltage profiles. Furthermore, experimental observations and theoretical calculations further clarified the role played by GQDs by proving that C-S bonding occurs. Thus, the introduction of GQDs into Li-S batteries will provide an important breakthrough allowing their use as high-performance and low-cost batteries for next-generation energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据