4.5 Article

Three-Dimensional Static and Free Vibration Analysis of Carbon Nano Tube Reinforced Composite Cylindrical Shell Using Differential Quadrature Method

期刊

出版社

IMPERIAL COLLEGE PRESS
DOI: 10.1142/S1758825116500332

关键词

Elasticity; carbon nanotube; cylindrical shell; FGM; differential quadrature method

向作者/读者索取更多资源

In this paper, bending and free vibration analysis of carbon nanotubes reinforced composite (CNTRC) cylindrical shell is carried out using the three-dimensional theory of elasticity. The single-walled carbon nanotubes (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction which, are specified as the cases FG-Delta, FG-del, FG-lozenge and FG-X. Effective material properties of CNTRC cylindrical shell are estimated according to the rule of mixture as well as considering the CNT efficiency parameters. An analytical solution is performed by using Fourier series along the axial coordinate together with state space technique along the radial coordinate for the simply supported CNTRC cylindrical shell. Moreover, for CNTRC cylindrical shell with other edges boundary conditions, a semi-analytical solution is accomplished by using differential quadrature method (DQM) along the axial coordinate and state space technique along the radial coordinate. Present approach is validated by comparing the numerical results with the available published results. Furthermore, effect of types of CNT distributions in the polymer matrix, volume fraction of CNT, edges boundary conditions and radial-to-thickness ratio on the bending and free vibration behavior of FG-CNTRC cylindrical are examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据