4.5 Article

A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow of a bio-convective Casson fluid past a wedge

期刊

EUROPEAN PHYSICAL JOURNAL PLUS
卷 131, 期 11, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2016-16405-y

关键词

-

向作者/读者索取更多资源

Nowadays, many theoretical models are available for analyzing the heat and mass transfer of flows through different geometries. Nevertheless, it is challenging for researchers to choose among these models, the most suitable for a particular geometry. In addition to this, the extrinsic magnetic field is capable to set the thermal and physical properties of magnetic fluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of the fluids and makes it anisotropic. With this incentive, we attempt to study the thermophoresis and Brownian motion effects on the magnetohydrodynamic radiative Casson fluid flow over a wedge filled with gyrotactic microorganisms by considering the Blasius and Falkner-Skan models. Numerical solutions are offered graphically as well as in tabular form with the aid of Runge-Kutta and Newton's methods. Results for Blasius and Falkner-Skan flow cases are exhibited through plots for the parameters of concern. For real life applications, we also calculated the heat and mass transfer rates. It is observed that thermal and concentration boundary layers are not uniform for Falkner-Skan and Blasius flow cases. It is also observed that the heat and mass transfer rate is high in Falkner-Skan flow when compared with Blasius flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据