4.1 Article

In vitro formation of neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients

期刊

CELL ADHESION & MIGRATION
卷 11, 期 1, 页码 1-12

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19336918.2015.1131388

关键词

central nervous system; chemotaxis; collective migration; medulloblastoma; retinal progenitors; SDF-1; stromal-derived growth factor

资金

  1. National Institutes of Health
  2. National Cancer Institute
  3. National Science Foundation

向作者/读者索取更多资源

Central nervous system (CNS) cells cultured in vitro as neuroclusters are useful models of tissue regeneration and disease progression. However, the role of cluster formation and collective migration of these neuroclusters to external stimuli has been largely unstudied in vitro. Here, 3 distinct CNS cell types, medulloblastoma (MB), medulloblastoma-derived glial progenitor cells (MGPC), and retinal progenitor cells (RPC), were examined with respect to cluster formation and migration in response to Stromal-Derived Growth Factor (SDF-1). A microfluidic platform was used to distinguish collective migration of neuroclusters from that of individual cells in response to controlled concentration profiles of SDF-1. Cell lines were also compared with respect to expression of CXCR4, the receptor for SDF-1, and the gap junction protein Connexin 43 (Cx43). All cell types spontaneously formed clusters and expressed both CXCR4 and Cx43. RPC clusters exhibited collective chemotactic migration (i.e. movement as clusters) along SDF-1 concentration gradients. MGPCs clusters did not exhibit adhesion-based migration, and migration of MB clusters was inconsistent. This study demonstrates how controlled microenvironments can be used to examine the formation and collective migration of CNS-derived neuroclusters in varied cell populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据