4.8 Article

Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells

期刊

ADVANCED ENERGY MATERIALS
卷 6, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201600706

关键词

-

资金

  1. Australian Government through the Australian Renewable Energy Agency (ARENA)
  2. Australian Research Council (ARC)
  3. Guodian New Energy Technology Research Institute

向作者/读者索取更多资源

Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost-effective material for next-generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high-performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur-only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD-CdS, improving the minority lifetime, open circuit voltage (V-OC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (J(sc)). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD-CdS can directly epitaxially grow on CZTS and Cd-diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high-efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据