4.8 Article

Low-Temperature Solution-Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 6, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201600376

关键词

-

资金

  1. Sate Key Program of National Natural Science of China [51532005]
  2. National Nature Science Foundation of China [51472148, 51272137]
  3. Tai Shan Scholar Foundation of Shandong Province

向作者/读者索取更多资源

Different from previously reported mechanical alloying route to synthesize SnxP3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low-temperature solution-based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g(-1) at a current density of 100 mA g(-1) over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g(-1) even at a high current density of 2.0 A g(-1). Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g(-1) after 1500 cycles at a high current density of 1.0 A g(-1). The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据