4.8 Article

In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy

期刊

ADVANCED ENERGY MATERIALS
卷 6, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201600099

关键词

-

资金

  1. United States Department of Energy EPSCoR Implementation award [DE-SC0007074]
  2. U.S. Department of Energy (DOE) [DE-SC0007074] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation-induced volume changes in silicon in lithium ion half-cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom-designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes-1.2 M lithium hexafluoro-phosphate (LiPF6) in ethylene carbonate (EC) and 1.2 M LiPF6 in propylene carbonate (PC)-to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is approximate to 17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress-potential coupling in silicon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据