4.8 Article

Low Band Gap Benzimidazole COF Supported Ni3N as Highly Active OER Catalyst

期刊

ADVANCED ENERGY MATERIALS
卷 6, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201601189

关键词

-

资金

  1. IISER, Pune
  2. MHRD, India
  3. DST-nanomission, India
  4. Enovex Corp.
  5. SERB
  6. CII
  7. DST
  8. Enovex

向作者/读者索取更多资源

Covalent organic frameworks (COFs) have structures and morphologies closely resembling graphenes, whose modular construction permits atomiclevel manipulations. This, combined with their porous structure, makes them excellent catalyst supports. Here, the high electrocatalytic activity of a composite, formed by supporting Ni3N nanoparticles on a benzimidazole COF, for oxygen evolution reaction is shown. The composite oxidizes alkaline water with a near-record low overpotential of 230 mV @ 10 mA cm(-2) (eta(10)). This high activity is attributed to the ability of the COF to confine the Ni3N nanoparticles to size regimes otherwise difficult to obtain and to its low band gap character (1.49 eV) arising from the synergy between the conducting Ni3N nanoparticles and the pi-conjugated COF. The COF itself, as a metalfree self-standing framework, has an oxygen evolution reaction activity with 10 of 400 mV. The periodic structure of the COF makes it serve as a matrix to disperse the catalytically active Ni3N nanoparticles favoring their high accessibility and thereby good charge-transport within the composite. This is evident from the amount of O-2 evolved (230 mmol h(-1) g(-1)), which, to the best of our knowledge, is the highest reported. The work reveals the emergence of COF as supports for electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据