4.0 Article

Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges

期刊

ACS COMBINATORIAL SCIENCE
卷 18, 期 10, 页码 630-637

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscombsci.6b00040

关键词

high-throughput; alloy microstructure; combinatorial materials science; phase mapping

资金

  1. NSF-DMREF/Goali [1436268]
  2. NSF [MRSEC DMR 1119826]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1436268] Funding Source: National Science Foundation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1435820] Funding Source: National Science Foundation

向作者/读者索取更多资源

The exploration of new alloys with desirable properties has been a long-standing challenge in materials science because of the complex relationship between composition and microstructure. In this Research Article, we demonstrate a combinatorial strategy for the exploration of composition dependence of microstructure. This strategy is comprised of alloy library synthesis followed by high throughput microstructure characterization. As an example, we synthesized a ternary Au-Cu-Si composition library containing over 1000 individual alloys using combinatorial sputtering. We subsequently melted and resolidified the entire library at controlled cooling rates. We used scanning optical microscopy and X-ray diffraction mapping to explore trends in phase formation and microstructural length scale with composition across the library. The integration of combinatorial synthesis with parallelizable analysis methods provides a efficient method for examining vast compositional ranges. The availability of microstructures from this vast composition space not only facilitates design of new alloys by controlling effects of composition on phase selection, phase sequence, length scale, and overall morphology, but also will be instrumental in understanding the complex process of microstructure formation in alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据