4.8 Article

First-Principles Microkinetic Modeling of Methane Oxidation over Pd(100) and Pd(111)

期刊

ACS CATALYSIS
卷 6, 期 10, 页码 6730-6738

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b01752

关键词

heterogeneous catalysis; microkinetic modeling; DFT; methane oxidation; palladium; Pd(100); Pd(111)

资金

  1. Swedish Research Council
  2. Chalmers Areas of Advance Nanoscience and Nanotechnology and Transport
  3. Swedish Energy Agency
  4. AB Volvo
  5. ECAPS AB
  6. Haldor Topsee A/S
  7. Scania CV AB
  8. Volvo Car Corporation AB
  9. Wartsila Finland Oy

向作者/读者索取更多资源

The intrinsic activity of Pd(100) and Pd(111) for methane oxidation is investigated by Density Functional Theory (DFT)-based mean-field microkinetic modeling. The model includes 32 reaction steps, and the calculated turnover frequencies together with reaction orders compare favorably with experimental data. On both surfaces, the reaction proceeds via complete dehydrogenation of methane to elemental carbon followed by different mechanisms for carbon oxidization. Pd(100) is found to be more active than Pd(111) at temperatures from 400 to 1000 K. For both surfaces, the reaction order in methane approaches unity with increasing temperature. The reaction order in water is positive at low temperatures owing to water-promoted carbon oxidation. Methane dissociation is the main rate-controlling step for Pd(111), whereas formation of COH and CO is also controlling the rate over Pd(100). The present work uncovers the detailed reaction mechanisms for complete methane oxidation over palladium, which can be used in catalyst design to target the rate-controlling steps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据