4.8 Article

Ni-M-O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane

期刊

ACS CATALYSIS
卷 6, 期 5, 页码 2852-2866

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b00044

关键词

solid-state synthesis; NiO; semiconductor; ethylene production; oxidative dehydrogenation; single atom

资金

  1. Dow Chemical Company

向作者/读者索取更多资源

A new generation of Ni-Sn-O, Ni-Ti-O, and Ni-W-O catalysts has been prepared by a solid-state grinding method. In each case the doping metal varied from 2.5% to 20%. These catalysts exhibited higher activity and selectivity for ethane oxidative dehydrogenation (ODH) than conventionally prepared mixed oxides. Detailed characterization was achieved using XRD, N-2 adsorption, H-2-TPR, SEM, TEM, and HAADF-STEM in order to study the detailed atomic structure and textural properties of the synthesized catalysts. Two kinds of typical structures are found in these mixed oxides, which are (major) NixMyO (M = Sn, Ti, W) solid solution phases (NiO crystalline structure with doping atom incorporated in the lattice) and (minor) secondary phases (SnO2, TiO2, or WO3). The secondary phase exists as a thin layer around small NixMyO particles, lowering the aggregation of nanoparticles during the synthesis. DFT calculations on the formation energies of M-doped NiO structures (M = Sn, Ti, W) clearly confirm the thermodynamic feasibility of incorporating these doping metals into the NiO struture. The incorporation of doping metals into the NiO lattice decreases the number of holes (h(+)) localized on lattice oxygen (O2- + h(+) -> O center dot-), which is the main reason for the improved catalytic performance (O center dot- known to favor complete ethane oxidation to CO2). The high efficiency of ethylene production achieved in these particularly prepared mixed oxide catalysts indicates that the solid grinding method could serve as a general and practical approach for the preparation of doped NiO-based catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据