4.8 Article

Utilizing Quantitative in Situ FTIR Spectroscopy To Identify Well-Coordinated Pt Atoms as the Active Site for CO Oxidation on Al2O3-Supported Pt Catalysts

期刊

ACS CATALYSIS
卷 6, 期 8, 页码 5599-5609

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b01128

关键词

quantitative DRIFTS; structure sensitivity; active site determination; adsorbate-induced restructuring; CO oxidation

资金

  1. University of California, Riverside
  2. U.S. Army Research Office through the YIP program [W911NF-14-1-0347]

向作者/读者索取更多资源

Relationships between geometric structures of active metallic sites and areal rates of reaction (structure sensitivity) are extensively studied for supported metal catalysts. For CO oxidation on irreducible oxide-supported Pt catalysts, there still exists a discrepancy regarding structure sensitivity. Theoretical and single-crystal analyses suggest the CO oxidation reaction rate should be highly structure sensitive, whereas measurements on supported Pt catalysts show only minimal structure sensitivity. Here, we used quantitative in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) to investigate the influence of CO oxidation reaction conditions on the fraction of well-coordinated (WC) and under coordinated (UC) Pt active sites on a series of four alpha-Al2O3-supported Pt catalysts with average Pt sizes ranging from similar to 1.4 to 19 nm. Pt nanoparticle surfaces were observed to restructure under CO oxidation reaction conditions, increasing the fraction of UC Pt sites. Reconstruction rendered the fraction of WC and UC sites less dependent on Pt particle size than expected from geometric models. A model, coupling the DRIFTS measurements with previous theoretical calculations, was quantitatively correlated to the measured slight structure sensitivity on the same series of catalysts. Our results bridge the gap between previous studies exploiting theory, single crystals, and supported Pt catalysts by demonstrating that WC Pt atoms are the active site for CO oxidation, but that CO-induced restructuring of Pt nanoparticle surfaces masks the inherent structure sensitivity in particle-size-dependent rate measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据