4.8 Article

Beyond Strain and Ligand Effects: Microstrain-Induced Enhancement of the Oxygen Reduction Reaction Kinetics on Various PtNi/C Nanostructures

期刊

ACS CATALYSIS
卷 7, 期 1, 页码 398-408

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b02356

关键词

proton exchange membrane fuel cell; oxygen reduction reaction; structural defects; grain boundary; microstrain

资金

  1. University Grenoble-Alpes through the AGIR program [LL1492017G]
  2. French National Research Agency through the HOLLOW project [ANR-14-CE05-0003-01]

向作者/读者索取更多资源

The electrical performance of a proton exchange membrane fuel cell is limited by the slow oxygen reduction reaction (ORR) kinetics. Catalytic improvements for the ORR have been obtained on alloyed PtM/C or M-rich-core@Pt-rich-shell/C catalysts (where M is an early or late transition metal) in comparison to pure Pt/C, due to a combination of strain and ligand effects. However, the effect of the fine nanostructure of the nanomaterials on the ORR kinetics remains underinvestigated. Here, nanometer-sized PtNi/C electrocatalysts with low Ni content (similar to 15 atom %) but different nanostructures and different densities of grain boundary were synthesized: solid, hollow, or sea sponge PtNi/C nanoalloys, and solid Ni-core@Pt-shell/C nanoparticles. These nanostructures were characterized by transmission and scanning transmission electron microscopy, X-ray energy dispersive spectroscopy, synchrotron wide-angle X-ray scattering (WAXS), atomic absorption spectroscopy, and electrochemical techniques. Their electrocatalytic activities for the ORR were determined and structure-activity relationships established. The results showed the following: (i) The compression of the Pt lattice by ca. 15 atom % Ni provides mild ORR activity enhancement in comparison to pure Pt/C. (ii) Highly defective PtNi/C nanostructures feature up to 9.3-fold enhancement of the ORR specific activity over a commercial Pt/C material with similar crystallite size. (iii) The enhancement of the ORR kinetics can be ascribed to the presence of structural defects, as shown by two independent parameters: the microstrain determined from WAXS and the average COads electrooxidation potential (mu(CO)(1)) determined from COads stripping measurements. This work indicates that, at fixed Ni content, ORR activity can be tuned by nanostructuring and suggests that targeting structural disorder is a promising approach to improve the electrocatalytic properties of mono- or bimetallic nanocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据