4.8 Article

Anatase TiO2 Activated by Gold Nanoparticles for Selective Hydrodeoxygenation of Guaiacol to Phenolics

期刊

ACS CATALYSIS
卷 7, 期 1, 页码 695-705

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b02368

关键词

guaiacol hydrogenation; phenol; gold catalyst; anatase; lignin

资金

  1. Chinese Government Thousand Talent program

向作者/读者索取更多资源

Gold nanoparticles on a number of supporting materials, including anatase TiO2 (TiO2-A, in 40 nm and 45 pm), rutile TiO2 (TiO2-R), ZrO2, Al2O3, SiO2, and activated carbon, were evaluated for hydrodeoxygenation of guaiacol in 6.5 MPa initial H-2 pressure at 300 degrees C. The presence of gold nanoparticles on the supports did not show distinguishable performance compared to that of the supports alone in the conversion level and in the product distribution, except for that on a TiO2-A-40 nm. The lack of marked catalytic activity on supports other than TiO2-A-40 nm suggests that Au nanoparticles are not catalytically active on these supports. Most strikingly, the gold nanoparticles on the least-active TiO2-A-40 nm support stood out as the best catalyst exhibiting high activity with excellent stability and remarkable selectivity to phenolics from guaiacol hydrodeoxygenation. The conversion of guaiacol (similar to 43.1%) over gold on the TiO2-A-40 nm was about 33 times that (1.3%) over the TiO2-A-40 nm alone. The selectivity of phenolics was 87.1%. The products are mainly phenolic compounds with no aromatics and saturated hydrocarbons such as cyclohexane. The gold particle size ranging from 2.7 to 41 nm and water content were found to significantly affect the Au/TiO2-A-40 nm catalyst activity but not the product selectivity. The reaction rates of 0.26 and 0.91 (min(-1) g-cat(-1) cm(3)) were determined for guaiacol hydrogenation and catechol hydrogenation, respectively. Bimolecular methylation was established as the dominant mechanism for methyl group transfer among the phenolics. Two major pathways of guaiacol hydrogenation to phenolics over the 0.4Au-19 nm/TiO2-A-40 nm are proposed: (1) direct hydrogenation of guaiacol to form phenol and methanol, (2) hydrodehydroxylation of catechol intermediate from the transmethylation between guaiacol and phenol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据