4.8 Article

Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

期刊

NATURE COMMUNICATIONS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms10922

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea [NRF-2011-0011392]
  2. Korea CCS R&D Center (KCRC) grant [NRF-2014M1A8A1049256]
  3. Advanced Biomass RD centre [ABC-2015M3A6A2066121]
  4. Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078884]
  5. MEST
  6. POSTECH
  7. Alexander von Humboldt Foundation
  8. National Research Foundation of Korea [2014M1A8A1049254, 2013M3A6B1078884, 2015M3A6A2066121, 2016H1A2A1907647, 2011-0011392, 10Z20130011056, 2014M1A8A1049256] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据