4.8 Article

Atomic intercalation to measure adhesion of graphene on graphite

期刊

NATURE COMMUNICATIONS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms13263

关键词

-

向作者/读者索取更多资源

The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale 'blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221 +/- 0.011 J m(-2). This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据