4.8 Article

A natural light-driven inward proton pump

期刊

NATURE COMMUNICATIONS
卷 7, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/ncomms13415

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology [26708001, 26115706, 26620005, 25104009, 15H02391]
  2. Grants-in-Aid for Scientific Research [15H03540, 25104009, 15H02391, 16H00758, 26708001, 15J06631, 26115706, 26620005, 16H00830, 15J06609, 16K18523] Funding Source: KAKEN

向作者/读者索取更多资源

Light-driven outward H+ pumps are widely distributed in nature, converting sunlight energy into proton motive force. Here we report the characterization of an oppositely directed H+ pump with a similar architecture to outward pumps. A deep-ocean marine bacterium, Parvularcula oceani, contains three rhodopsins, one of which functions as a light-driven inward H+ pump when expressed in Escherichia coli and mouse neural cells. Detailed mechanistic analyses of the purified proteins reveal that small differences in the interactions established at the active centre determine the direction of primary H+ transfer. Outward H+ pumps establish strong electrostatic interactions between the primary H+ donor and the extracellular acceptor. In the inward H+ pump these electrostatic interactions are weaker, inducing a more relaxed chromophore structure that leads to the long-distance transfer of H+ to the cytoplasmic side. These results demonstrate an elaborate molecular design to control the direction of H+ transfers in proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据