4.8 Article

Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells

期刊

NATURE COMMUNICATIONS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms11349

关键词

-

资金

  1. MEXT of Japan [KAKENHI 22500289, 25430035, KAKENHI 23123506, KAKENHI 22111006]
  2. Human Frontier Science Program [RGP0012]
  3. Grants-in-Aid for Scientific Research [25430035, 16H02457, 25430008] Funding Source: KAKEN

向作者/读者索取更多资源

During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据