4.2 Article

Supporting Read-Across Using Biological Data

期刊

出版社

SPEKTRUM AKADEMISCHER VERLAG-SPRINGER-VERLAG GMBH
DOI: 10.14573/altex.1601252

关键词

read-across; biological similarity; safety assessment; big data

资金

  1. NIEHS training grant [T32 ES007141]
  2. EU Horizon 2020 project EUToxRisk

向作者/读者索取更多资源

Read-across, i.e., filling toxicological data gaps by relating to similar chemicals for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, biological similarity based on biological data adds extra strength to this process. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of, e.g., genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances are becoming available, enabling big data approaches in read-across studies. In the context of developing Good Read-Across Practice guidance, a number of case studies using various big data sources were evaluated to assess the contribution of biological data to enriching read-across. An example is given for the US EPA's ToxCast dataset which allows read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example is given for REACH registration data that enhances read-across for acute toxicity studies. A different approach is taken using omics data to establish biological similarity: Examples are given for in vitro stem cell models and short-term in vivo repeated dose studies in rats used to support read-across and category formation. These preliminary biological data-driven read-across studies show the way towards the generation of new read-across approaches that can inform chemical safety assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据