4.2 Article

On estimation of the diagonal elements of a sparse precision matrix

期刊

ELECTRONIC JOURNAL OF STATISTICS
卷 10, 期 1, 页码 1551-1579

出版社

INST MATHEMATICAL STATISTICS-IMS
DOI: 10.1214/16-EJS1148

关键词

Precision matrix; sparse recovery; penalized likelihood

资金

  1. Investissements d'Avenir [ANR-11-IDEX-0003/LabexEcodec/ANR-11-LABX-0047]
  2. chair LCL/GENES/ Fondation du risque, Nouveaux enjeux pour nouvelles donnees

向作者/读者索取更多资源

In this paper, we present several estimators of the diagonal elements of the inverse of the covariance matrix, called precision matrix, of a sample of independent and identically distributed random vectors. The main focus is on the case of high dimensional vectors having a sparse precision matrix. It is now well understood that when the underlying distribution is Gaussian, the columns of the precision matrix can be estimated independently form one another by solving linear regression problems under sparsity constraints. This approach leads to a computationally efficient strategy for estimating the precision matrix that starts by estimating the regression vectors, then estimates the diagonal entries of the precision matrix and, in a final step, combines these estimators for getting estimators of the off-diagonal entries. While the step of estimating the regression vector has been intensively studied over the past decade, the problem of deriving statistically accurate estimators of the diagonal entries has received much less attention. The goal of the present paper is to fill this gap by presenting four estimators-that seem the most natural ones-of the diagonal entries of the precision matrix and then performing a comprehensive empirical evaluation of these estimators. The estimators under consideration are the residual variance, the relaxed maximum likelihood, the symmetry-enforced maximum likelihood and the penalized maximum likelihood. We show, both theoretically and empirically, that when the aforementioned regression vectors are estimated without error, the symmetry-enforced maximum likelihood estimator has the smallest estimation error. However, in a more realistic setting when the regression vector is estimated by a sparsity-favoring computationally efficient method, the qualities of the estimators become relatively comparable with a slight advantage for the residual variance estimator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据