4.4 Article

Numerical design of thin perovskite solar cell with fiber array-based anti-reflection front electrode for light-trapping enhancement

期刊

JOURNAL OF OPTICS
卷 18, 期 12, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2040-8978/18/12/125901

关键词

photovoltaic cells; fiber array; perovskite; anti-reflection coating; lensing effect

类别

向作者/读者索取更多资源

Perovskite has recently drawn substantial interest in photovoltaic research owing to its unique potentials of low cost fabrication and high power conversion efficiency. In this paper, a thin solar cells made of perovskite photoactive layer is introduced. The proposed perovskite-based solar cell with atop antireflection front electrode (p-ARFE) made of fiber arrays is calibrated to generate lensing/anti-reflecting effects and thus resulting in improved absorption efficiency. Theoretical and numerical results have demonstrated that the overall integrated AM1.5 G absorption in an optimal configuration yields a maximum short circuit current density of 20.2 mA cm(-2) and an enhancement up to 6.3% compared to its flat solar cell counterpart with a same perovskite thickness of 200 nm. The proposed p-ARFE solar cell also presents a relative broadband absorption characteristic with zero reflection at multiple visible frequencies, i.e., 360-750 nm, thus more benefiting associated with next-generation perovskite-based solar cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据