4.7 Article

Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media

期刊

WATER RESOURCES RESEARCH
卷 52, 期 3, 页码 2194-2205

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR018254

关键词

hydrology; oil recovery; multiphase flow; integral geometry

资金

  1. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  2. GeoSoilEnviroCARS
  3. National Science Foundation Earth Sciences [EAR-1128799]
  4. Department of Energy, Geosciences [DE-FG02-94ER14466]
  5. US National Science Foundation [EAR-1344877]
  6. Alexander-von-Humboldt Foundation
  7. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

The macroscopic description of the hysteretic behavior of two-phase flow in porous media remains a challenge. It is not obvious how to represent the underlying pore-scale processes at the Darcy-scale in a consistent way. Darcy-scale thermodynamic models do not completely eliminate hysteresis and our findings indicate that the shape of displacement fronts is an additional source of hysteresis that has not been considered before. This is a shortcoming because effective process behavior such as trapping efficiency of CO2 or oil production during water flooding are directly linked to pore-scale displacement mechanisms with very different front shape such as capillary fingering, flat frontal displacement, or cluster growth. Here we introduce fluid topology, expressed by the Euler characteristic of the nonwetting phase ((n)), as a shape measure of displacement fronts. Using two high-quality data sets obtained by fast X-ray tomography, we show that (n) is hysteretic between drainage and imbibition and characteristic for the underlying displacement pattern. In a more physical sense, the Euler characteristic can be interpreted as a parameter describing local fluid connectedness. It may provide the closing link between a topological characterization and macroscopic formulations of two-phase immiscible displacement in porous rock. Since fast X-ray tomography is currently becoming a mature technique, we expect a significant growth in high-quality data sets of real time fluid displacement processes in the future. The novel measures of fluid topology presented here have the potential to become standard metrics needed to fully explore them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据