4.8 Article

Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles

期刊

WATER RESEARCH
卷 104, 期 -, 页码 381-388

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2016.08.044

关键词

EPS; TiO2; DLS; Aggregation

资金

  1. National Natural Science Foundation of China [41522106]
  2. National Key Research Program of China [2016YFD0800206]
  3. National Basic Research Program of China [2015CB150504]

向作者/读者索取更多资源

The early stage of aggregation of titanium oxide (TiO2) nanoparticles was investigated in the presence of extracellular polymeric substance (EPS) constituents and common monovalent and divalent electrolytes through time-resolved dynamic light scattering (DLS). The hydrodynamic diameter was measured and the subsequent aggregation kinetics and attachment efficiencies were calculated across a range of 1-500 mM NaCl and 0.05-40 mM CaCl2 solutions. TiO2 particles were significantly aggregated in the tested range of monovalent and divalent electrolyte concentrations. The aggregation behavior of TiO2 particles in electrolyte solutions was in excellent agreement with the predictions based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Divalent electrolytes were more efficient in destabilizing TiO2 particles, as indicated by the considerably lower critical coagulation concentrations (CCC) (1.3 mM CaCl2 vs 11 mM NaCl). The addition of EPS to the NaCl and low concentration CaCl2 (0.05-10 mM) solutions resulted in a dramatic decrease in the aggregation rate and an increase in the CCC values. For solutions of 11 mM NaCl (the CCC values of TiO2 in the absence of EPS) and above, the resulting attachment efficiency was less than one, suggesting that the adsorbed EPS on the TiO2 nanoparticles led to steric repulsion, which effectively stabilized the nanoparticle suspension. At high CaCl2 concentrations (10-40 mM), however, the presence of EPS increased the aggregation rate. This is attributed to the aggregation of the dissolved extracellular polymeric macromolecules via intermolecular bridging, which in turn linked the TiO2 nanoparticles and aggregates together, resulting in enhanced aggregate growth. These results have important implications for assessing the fate and transport of TiO2 nanomaterials released in aquatic environments. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据