4.3 Article

Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma

期刊

VIRCHOWS ARCHIV
卷 469, 期 2, 页码 145-154

出版社

SPRINGER
DOI: 10.1007/s00428-016-1961-6

关键词

Endoplasmic reticulum stress; Unfolded protein response; Colon adenocarcinoma; Colon premalignancy; Tissue microarray

资金

  1. Societe Francaise de Pathologie

向作者/读者索取更多资源

When misfolded proteins accumulate in the endoplasmic reticulum (ER), the cell is said to experience ER stress. This triggers an unfolded protein response (UPR) to restore the balance between misfolded proteins and ER chaperones such as BiP. UPR signalling is required for the growth of many solid cancers. In chronic ER stress, factors including CHOP have been shown to mediate cell death. Colorectal adenocarcinoma arises due to progressive changes within pre-malignant lesions. Our aim was to test the hypothesis that the expression of BiP and CHOP correlates with the progression of those pre-malignant lesions. Eighty-one patients with colon neoplasms treated at Rouen University Hospital between January 1, 2003 and January 1, 2013 were randomly selected. The expression of BiP and CHOP was estimated by immunohistochemical staining of a tissue microarray generated from colon cores: normal tissue, low-grade and high-grade adenoma, invasive colon adenocarcinoma and lymph node metastasis of colon adenocarcinoma. In parallel, nine cases comprising areas from normal epithelium to dyplasia to invasive carcinoma and included in the TMA were analysed on whole sections. As colon epithelium shows increasing evidence of pre-malignant and then malignant changes, BiP expression significantly increases (p for trend < 0.001), whereas CHOP expression is attenuated (p for trend < 0.001). We identified a positive relationship between BiP expression and colon carcinogenesis, and a negative correlation for CHOP expression. These findings are consistent with a model in which ER stress accompanies oncogenesis and in which loss of proteins that mediate the toxicity of ER stress, such as CHOP, may facilitate tumorigenesis. This raises the exciting possibility that restoration of the negative feedback loop of UPR, if achievable, might antagonise the malignant process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据