4.7 Article

Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus

期刊

ULTRASONICS
卷 65, 期 -, 页码 137-144

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2015.10.008

关键词

Sonodynamic inactivation; Sonodynamic antibacterial chemotherapy; Hypocrellin B; Traditional Chinese medicines; Staphylococcus aureus, Drug-resistant bacteria

资金

  1. Hong Kong research grant committee (RGC) [476912]
  2. Health and Medical Research Fund, Food and Health Bureau, Hong Kong, China [1100502]

向作者/读者索取更多资源

Methicillin-resistant Staphylococcus aureus (MRSA) commonly causes refractory infections and has recently become a serious public health concern. The present study was designed to investigate sonodynamic action of hypocrellin B on MRSA. A MRSA strain (ATCC BAA-43) was used in the present study. The dark toxicity of hypocrellin B on MRSA and its uptake in MRSA first were measured. And then bacteria were incubated with hypocrellin B and exposed to ultrasound. After sonodynamic treatment, colony forming unit assay and bacterial viability assay were conducted. Membrane permeability assay, DNA fragmentation assay, and DNA synthesis assay were also performed to examine the underlying mechanism. The results showed that hypocrellin B at concentrations of up to 500 mu M had no toxicity to MRSA in the dark. After incubation for 50 min, hypocrellin B could be maximally absorbed by MRSA, and exhibited significant sonodynamic activity in a dose-dependent manner. The 5-log reduction in colony forming unit (CFU) was observed after hypocrellin B (40 mu M) treatment at an intensity of 1.38 W/cm(2) ultrasound for 5 min. Compared to the control, hypocrellin B alone and ultrasound sonication alone group, more dead cells were found and bacterial membrane integrity was notably damaged after sonodynamic treatment of hypocrellin B. However, no remarkable DNA damage was found in MRSA after sonodynamic treatment of hypocrellin B. All the findings demonstrated that hypocrellin B could serve as a potential antibacterial sonosensitizer to significantly cause damage to the membrane integrity of MRSA and inhibit its growth under ultrasound sonication. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据