4.4 Article

Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography

期刊

ULTRAMICROSCOPY
卷 171, 期 -, 页码 55-62

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultramic.2016.08.017

关键词

Electron tomography; EELS; Spectroscopy; Ceria nanoparticles; Dopants; Valency

资金

  1. Research Foundation Flanders (FWO Vlaanderen) [G038116N, 3G004613]
  2. European Research Council [COLOURATOMS 335078]
  3. Netherlands Organization for Scientific Research (NWO) [639.072.005]

向作者/读者索取更多资源

Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe2+ dopants is correlated with a reduction of the Ce atoms from Ce4+ towards Ce3+. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle. (C) 2016 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据