4.5 Article

Transcriptome responses of grafted Citrus sinensis plants to inoculation with the arbuscular mycorrhizal fungus Glomus versiforme

期刊

TREES-STRUCTURE AND FUNCTION
卷 30, 期 4, 页码 1073-1082

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-015-1345-6

关键词

Citrus sinensis; Arbuscular mycorrhizal fungi; Photosynthesis; Transport

类别

资金

  1. National Natural Science Foundation of China [31372014]
  2. Anhui Provincial Natural Science Foundation [1308085MC37]
  3. program of Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt

向作者/读者索取更多资源

'Newhall' grafted onto xiangcheng rootstock with Glomus versiforme or without displayed different responses, and genes related to photosystem II and alpha-linolenic acid metabolism pathways were involved in the responses. Previous studies have shown that there are significant differences in the physiological responses of 'Newhall' (Citrus sinensis) scions grafted onto trifoliate orange (Poncirus trifoliata) to arbuscular mycorrhizal (AM) fungi inoculation under normal and stress conditions. However, little is known about the transcriptomic responses of C. sinensis to AM fungi inoculation. In this study, we investigated the effects of inoculating the AM fungus Glomus versiforme on the biomass, pigment content, magnesium (Mg) content and distribution, net photosynthesis rate, and global transcriptome profile of 'Newhall' scions grafted onto xiangcheng (Citrus junos) rootstock. The results showed that AM inoculation significantly increased plant growth, Mg concentration, and photosynthesis, but not pigment contents. More than 68,299,008 transcripts were examined in spring-flush leaves, and 29 genes were identified as being differentially expressed in response to mycorrhizal colonization. The differentially expressed genes encoded proteinase inhibitors, transporters, and products related to chlorophyll and disease resistance. Genes encoding proteins related to chlorophyll and transport were up-regulated by AM inoculation while genes encoding proteinase inhibitors were down-regulated. Gene Ontology and KEGG database analyses revealed that genes related to photosystem II and alpha-linolenic acid metabolism pathways were involved in the response to AM inoculation. Comparative expression profiling revealed that the enhancement of photosynthesis after AM inoculation was due to activation of the light-harvesting complex family of proteins in photosystem II. Our results provide new insights into plant-mycorrhizal fungi interactions and their effects on plant growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据