4.5 Article

How are anatomical and hydraulic features of the mangroves Avicennia marina and Rhizophora mucronata influenced by siltation?

期刊

TREES-STRUCTURE AND FUNCTION
卷 30, 期 1, 页码 35-45

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-016-1357-x

关键词

Hydraulic conductivity; Wood anatomy; Stomata; Leaf area; Phloem band/growth layer ratio

类别

向作者/读者索取更多资源

Elevated sediment addition, or siltation, within mangrove ecosystems is considered as being negative for trees and saplings, resulting in stress and higher mortality rates. However, little is known about how siltation influences the hydraulic functioning of mangrove trees. Comparing two mangrove tree species (Avicennia marina Vierh. Forsk. and Rhizophora mucronata Lam.) from low and high-siltation plots led to the detection of anatomical and morphological differences and tendencies. Adaptations to high siltation were found to be either mutual among both species, e.g., significant smaller single leaf area (p(A.marina) = 0.058, F1.38 = 3.8; p(R.mucronata) = 0.005, F1.38 = 8.7; n = 20 x 20) and a tendency towards smaller stomatal areas (p(A.marina) = 0.131, F1.8 = 2.8; p(R.mucronata) = 0.185, F1.8 = 2.1, n = 5 x 60), or species-specific trends for A. marina, such as higher phloem band/growth layer ratios (p = 0.101, F1.8 = 3.4, n = 5 x 3) and stomatal density (p = 0.052, F1.8 = 5.2, n = 5 x 4). All adaptations seemingly contributed to a comparable hydraulic conductivity independent of the degree of siltation. These findings indicate that silted trees level off fluctuations in their hydraulic performance as a survival mechanism to cope with this less favourable environment. Most of the trees' structural adaptations to cope with siltation are similar to known drought stressimposed adaptations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据