4.5 Article

Extracellular vesicle-driven information mediates the long-term effects of particulate matter exposure on coagulation and inflammation pathways

期刊

TOXICOLOGY LETTERS
卷 259, 期 -, 页码 143-150

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2016.08.002

关键词

Particulate air pollution (PM); Extracellular vesicles (EVs); microRNAs; EV-encapsulated microRNAs (EVmiRNAs); Cardiorespiratory diseases (CRD); Type 2 diabetes (T2D); Inflammation; Coagulation

资金

  1. INAIL Foundation
  2. Lombardy Region Research Contracts
  3. EU [ERC-2011-StG 282413]
  4. National Institute of Environmental Health Sciences [R01 ES025225]

向作者/读者索取更多资源

Background: Continuous exposure to particulate air pollution (PM) is a serious worldwide threat to public health as it coherently links with increased morbidity and mortality of cardiorespiratory diseases (CRD), and of type 2 diabetes (T2D). Extracellular vesicles (EVs) are circular plasma membrane fragments released from human cells that transfer microRNAs between tissues. In the present work it was explored the hypothesis that EVs with their encapsulated microRNAs (EVmiRNAs) contents might mediate PM effects by triggering key pathways in CRD and T2D. Methods: Expression of EVmiRNAs analyzed by real-time PCR was correlated with oxidative stress, coagulation and inflammation markers, from healthy steel plant workers (n = 55) with a well characterized exposure to PM and PM-associated metals. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways regulated by PM-associated EVmiRNAs. Results: Increased expression in 17 EVmiRNAs is associated with PM and metal exposure (p < 0.01). Mir-196b that tops the list, being related to 9 different metals, is fundamental in insulin biosynthesis, however three (miR-302b, miR-200c, miR-30d) out of these 17 EVmiRNAs are in turn also related to disruptions (p <0.01) in inflammatory and coagulation markers. Conclusions: The study's findings support the hypothesis that adverse cardiovascular and metabolic effects stemming from inhalation exposures in particular to PM metallic component may be mediated by EVmiRNAs that target key factors in the inflammation, coagulation and glucose homeostasis pathways. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据