4.3 Article

The Effects of Visuomotor Calibration to the Perceived Space and Body, through Embodiment in Immersive Virtual Reality

期刊

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2818998

关键词

Experimentation; Human Factors

资金

  1. FP7 EU VR-HYPERSPACE under the Aeronautics and Air Transport (AAT) work program [AAT-285681]
  2. ICREA Funding Source: Custom

向作者/读者索取更多资源

We easily adapt to changes in the environment that involve cross-sensory discrepancies (e.g., between vision and proprioception). Adaptation can lead to changes in motor commands so that the experienced sensory consequences are appropriate for the new environment (e.g., we program a movement differently while wearing prisms that shift our visual space). In addition to these motor changes, perceptual judgments of space can also be altered (e.g., how far can I reach with my arm?). However, in previous studies that assessed perceptual judgments of space after visuomotor adaptation, the manipulation was always a planar spatial shift, whereas changes in body perception could not directly be assessed. In this study, we investigated the effects of velocity dependent (spatiotemporal) and spatial scaling distortions of arm movements on space and body perception, taking advantage of immersive virtual reality. Exploiting the perceptual illusion of embodiment in an entire virtual body, we endowed subjects with new spatiotemporal or spatial 3D mappings between motor commands and their sensory consequences. The results imply that spatiotemporal manipulation of 2 and 4 times faster can significantly change participants' proprioceptive judgments of a virtual object's size without affecting the perceived body ownership, although it did affect the agency of the movements. Equivalent spatial manipulations of 11 and 22 degrees of angular offset also had a significant effect on the perceived virtual object's size; however, the mismatched information did not affect either the sense of body ownership or agency. We conclude that adaptation to spatial and spatiotemporal distortion can similarly change our perception of space, although spatiotemporal distortions can more easily be detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据