4.7 Article

Genomic prediction for grain zinc and iron concentrations in spring wheat

期刊

THEORETICAL AND APPLIED GENETICS
卷 129, 期 8, 页码 1595-1605

出版社

SPRINGER
DOI: 10.1007/s00122-016-2726-y

关键词

-

资金

  1. HarvestPlus challenge program
  2. CGIAR research program on Agriculture for Nutrition and Health

向作者/读者索取更多资源

Predictability estimated through cross-validation approach showed moderate to high level; hence, genomic selection approach holds great potential for biofortification breeding to enhance grain zinc and iron concentrations in wheat. Wheat (Triticum aestivum L.) is a major staple crop, providing 20 % of dietary energy and protein consumption worldwide. It is an important source of mineral micronutrients such as zinc (Zn) and iron (Fe) for resource poor consumers. Genomic selection (GS) approaches have great potential to accelerate development of Fe- and Zn-enriched wheat. Here, we present the results of large-scale genomic and phenotypic data from the HarvestPlus Association Mapping (HPAM) panel consisting of 330 diverse wheat lines to perform genomic predictions for grain Zn (GZnC) and Fe (GFeC) concentrations, thousand-kernel weight (TKW) and days to maturity (DTM) in wheat. The HPAM lines were phenotyped in three different locations in India and Mexico in two successive crop seasons (2011-12 and 2012-13) for GZnC, GFeC, TKW and DTM. The genomic prediction models revealed that the estimated prediction abilities ranged from 0.331 to 0.694 for Zn and from 0.324 to 0.734 for Fe according to different environments, whereas prediction abilities for TKW and DTM were as high as 0.76 and 0.64, respectively, suggesting that GS holds great potential in biofortification breeding to enhance grain Zn and Fe concentrations in bread wheat germplasm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据