4.5 Article

Coseismic deformation fields and a fault slip model for the Mw7.8 mainshock and Mw7.3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentinel-1A SAR interferometry

期刊

TECTONOPHYSICS
卷 686, 期 -, 页码 158-169

出版社

ELSEVIER
DOI: 10.1016/j.tecto.2016.07.032

关键词

Nepal earthquake; InSAR; Coseismic deformation; Slip distribution; Inversion

资金

  1. National Natural Science Foundation of China [41374015, 41461164002]
  2. National Key Laboratory of Earthquake Dynamics [LED2015A03, LED2013A02]

向作者/读者索取更多资源

Coseismic deformation fields caused by the moment magnitude (Mw)7.8 mainshock and Mw7.3 aftershock of the 2015 Gorkha-Nepal earthquake are obtained by analyzing Sentinel-1A/IW ascending and descending interferometry data. Results show that the deformation field associated with the Mw7.8 mainshock roughly resembles a prolate ellipse, extending from the epicenter about 20 degrees east by south. The main region of deformation is about 160 km by 110 km, comprising a large southern area of uplift, and a small northern area of subsidence. Assuming that rupture occurred in a homogeneous elastic half-space, the coseismic fault slip models of the mainshock and aftershock are inverted based on a shallow dip fault constrained by the three data sets, Sentinel-1A/IW descending data, ascending data, and ALOS-2 descending data, separately or in combination. Mainshock slip distributions generated from all three data sets are similar, and inversion constrained by all three in combination reveal a comprehensive fault slip model. Indeed, coseismic slip is mainly distributed within a narrow 40 km zone to the north of the Main Frontal Trust (MFT), and at 6-15 km subsurface depth. In addition, the maximum slip in this event was about 5.1 m, the Mw7.8 mainshock ruptured the deep part of the seismogenic zone, while the region between the southern boundary of the rupture area and the MFT remained locked. Therefore, a considerable earthquake risk remains to the south of Kathmandu. The inverted coseismic slip of the Mw7.3 aftershock was concentrated in a small area, close to, and southeast of the epicenter, with maximum displacement of about 3 m. Finally, because there is no overlap between the two slip areas of the mainshock and aftershock, the gap between them, about 15 km in length, has additional potential to generate future earthquakes. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据