4.5 Article

Burkholderia novacaledonica sp nov and B. ultramafica sp nov isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia

期刊

SYSTEMATIC AND APPLIED MICROBIOLOGY
卷 39, 期 3, 页码 151-159

出版社

ELSEVIER GMBH
DOI: 10.1016/j.syapm.2016.03.008

关键词

Burkholderia novacaledonica; Burkholderia ultramafica; Costularia; Ultramafic soils; New Caledonia

资金

  1. GOPS project [10]

向作者/读者索取更多资源

The taxonomic status of eleven rhizospheric bacterial strains belonging to the genus Burkholderia and isolated from roots of Costularia (Cyperaceae), tropical herbaceous pioneer plants growing on ultramafic soils in New Caledonia, was investigated using a polyphasic taxonomic approach. The genetic analyses (16S rRNA genes, gyrB, recA, nreB and cur) confirmed that all strains are Burkholderia and cluster into two separated groups. The DNA hybridization results showed low relatedness values to the closest relatives Burkholderia species. The phenotypic analyses confirmed that the two groups of strains could be differentiated from each other and from other known Burkholderia species. This polyphasic study revealed that these two groups of strains represent each a novel species of Burkholderia, for which the names Burkholderia novacaledonica sp. nov. (type strain STM10272(T) = LMG28615(T) = CIP110887(T)) and B. ultramafica sp. nov. (type strain STM10279(T) = LMG28614(T) = CIP110886(T)) are proposed, respectively. These strains of Burkholderia presented specific ecological traits such as the tolerance to the extreme edaphic constraints of ultramafic soils: they grew at pH between 4 and 8 and tolerate the strong unbalanced Ca/Mg ratio (1/19) and the high concentrations of heavy metals i.e. Co, Cr, Mn and Ni. Noteworthy B. ultramafica tolerated nickel until 10mM and B. novacaledonica up to 5 mM. The presence of the nickel (nreB) and cobalt/nickel (cnr) resistance determinants encoding for protein involved in metal tolerance was found in all strains of both groups. Moreover, most of the strains were able to produce plant growth promoting molecules (ACC, IAA, NH3 and siderophores). Such ecological traits suggest that these new species of Burkholderia might be environmentally adaptable plant-associated bacteria and beneficial to plants. (C) 2016 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据