4.4 Article

Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments

期刊

SURFACE SCIENCE
卷 652, 期 -, 页码 253-260

出版社

ELSEVIER
DOI: 10.1016/j.susc.2016.02.019

关键词

Aerosols; Colloids; Particle agglomeration; Photoluminescence; Oxygen interstitials

资金

  1. Deutsche Forschungsgemeinschaft [DI 1613/2-1]
  2. COST Action [CM1104]
  3. Austrian Science Fund (FWF) [P 28211-N36]
  4. Austrian Science Fund (FWF) [P28211] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

We transformed vapor phase grown ZnO nanoparticle powders into aqueous ZnO nanoparticle dispersions and studied the impact of associated microstructure and interface property changes on their spectroscopic properties. With photoluminescence (PL) spectroscopy, we probed oxygen interstitials O-i(2-) in the near surface region and tracked their specific PL emission response at hv(EM) = 2.1 eV during the controlled conversion of the solid vacuum into the solid-liquid interface. While oxygen adsorption via the gas phase does affect the intensity of the PL emission bands, the O-2 contact with ZnO nanoparticles across the solid-liquid interface does not. Moreover, we found that the near band edge emission feature at hv(Em) = 3.2 eV gains relative intensity with regard to the PL emission features in the visible light region. Searching for potential PL indicators that are specific to early stages of particle dissolution, we addressed for aqueous ZnO nanoparticle dispersions the effect of formic acid adsorption. In the absence of related spectroscopic features, we were able to consistently track ZnO nanoparticle dissolution and the concomitant formation of solvated Zinc formate species by means of PL and FT-IR spectroscopy, dynamic light scattering, and zeta potential measurements. For a more consistent and robust assessment of nanoparticle properties in different continuous phases, we discuss characterization challenges and potential pitfalls that arise upon replacing the solid-gas with the solid-liquid interface. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据