4.2 Article

Binding energy shifts for nitrogen-containing graphene-based electrocatalysts - experiments and DFT calculations

期刊

SURFACE AND INTERFACE ANALYSIS
卷 48, 期 5, 页码 293-300

出版社

WILEY-BLACKWELL
DOI: 10.1002/sia.5935

关键词

graphitic nitrogen; core level shifts; oxygen reduction reactions; XPS; DFT; electrocatalysts

资金

  1. DOE-EERE Fuel Cell Technology Program
  2. National Science Foundation [DMR TG-110093]

向作者/读者索取更多资源

A detailed analysis of the physiochemical nature, thermodynamic properties, and electrochemical characterization of N motifs present in self-assembled nitrogen functionalized transition metal and nitrogen doped graphene pyrolyzed materials has been conducted in this study. First principle density-functional-theory calculations were performed to assess the thermochemistry of Fe-N-x and graphitic-N defects and to predict N1s core-level-shifts. Combining this prediction with our X-ray photoelectron spectroscopy and rotating ring disk electrode experiments, we find that graphitic-N contributes significantly to hydrogen peroxide formation in oxygen reduction reactions, while materials containing nitrogen coordinated transition metal result in the complete reduction of oxygen to water. Lastly, we show how the synergy of experimental, electrochemical, and computational approaches can accelerate the accurate identification and characterization of nitrogen functionalized graphene moieties present in pyrolyzed electrocatalysts for fuel cells. Copyright (c) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据