4.5 Article

Self-protection mechanisms in no-insulation (RE) Ba2Cu3Ox high temperature superconductor pancake coils

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-2048/29/4/045007

关键词

no-insulation coil; quench model; self-protection; coupled circuit network model

资金

  1. China Scholarship Council

向作者/读者索取更多资源

No-insulation (NI) high temperature superconducting (HTS) coils possess much higher thermal stability than similar traditionally insulated HTS coils. Some NI coils are self-protecting in the sense that they fully recover after a quench without any external protection mechanism to dissipate the stored energy. The underlying mechanisms that make NI coils highly stable or even self-protecting, however, remain unclear. To answer this question, a numerical multiphysics quench model for NI pancake coils is built to study the electrical, thermal and magnetic behavior of NI coils subjected to local heat disturbances. The multiphysics model is built from an electric network model, tightly coupled to a two-dimensional thermal coil model and a three-dimensional magnetic field coil model. The results show that when heat disturbance initiates a local normal region on a turn, the transport current is redistributed not only from the local normal region, but also along the entire turn. The redistributed current flows in the form of radial current across the turn-to-turn contact resistance along the entire turn to the neighboring turns which are still in the superconducting state, driving these turns to an overcurrent state. This full-turn current sharing and overcurrent operation accelerate the redistribution of current away from the hot-spot, reducing localized Joule heating that would otherwise cause a sustainable quench. The results also show that the magnetic field generated at the coil center drops rapidly and the coil voltage changes dynamically during the early stage of normal zone formation. These phenomena can be utilized as effective methods for quench detection in NI coils by monitoring the magnetic field and coil voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据