4.5 Article

Accounting for radiative forcing from albedo change in future global land-use scenarios

期刊

CLIMATIC CHANGE
卷 131, 期 4, 页码 691-703

出版社

SPRINGER
DOI: 10.1007/s10584-015-1411-5

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-AC02-0 5CH11231]
  2. National Science Foundation
  3. Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy
  4. DOE [DE-AC06-76RLO 1830]
  5. U.S. Department of Energy [DE-AC02-0 5CH11231]

向作者/读者索取更多资源

We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km(2) of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and -0.71 nW/m(2) of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from -0.06 to -0.29 W/m(2) by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm(-2), corresponding to a 12-67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据