4.7 Article

Guided-wave signal processing by the sparse Bayesian learning approach employing Gabor pulse model

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1475921716665252

关键词

Lamb wave; damage detection; sparse representation; sparse Bayesian learning; Gabor pulse; PVDF

资金

  1. Ministry of Science and Technology of the People's Republic of China [2011BAK02B02]
  2. China Scholarship Council [201406120190]

向作者/读者索取更多资源

Guided waves have been used for structural health monitoring to detect damage or defects in structures. However, guided wave signals often involve multiple modes and noise. Extracting meaningful damage information from the received guided wave signal becomes very challenging, especially when some of the modes overlap. The aim of this study is to develop an effective way to deal with noisy guided-wave signals for damage detection as well as for de-noising. To achieve this goal, a robust sparse Bayesian learning algorithm is adopted. One of the many merits of this technique is its good performance against noise. First, a Gabor dictionary is designed based on the information of the noisy signal. Each atom of this dictionary is a modulated Gaussian pulse. Then the robust sparse Bayesian learning technique is used to efficiently decompose the guided wave signal. After signal decomposition, a two-step matching scheme is proposed to extract meaningful waveforms for damage detection and localization. Results from numerical simulations and experiments on isotropic aluminum plate structures are presented to verify the effectiveness of the proposed approach in mode identification and signal de-noising for damage detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据