4.7 Article

Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design

期刊

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
卷 54, 期 5, 页码 1157-1172

出版社

SPRINGER
DOI: 10.1007/s00158-016-1551-x

关键词

Additive manufacturing; 3D printing; Projection methods; Anchors; Design for additive manufacturing; Self-supporting; Overhang features

资金

  1. U.S. Department of Energy
  2. USARL
  3. US National Science Foundation [1462453]
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1462453] Funding Source: National Science Foundation

向作者/读者索取更多资源

Additively manufactured components often require temporary support material to prevent the component from collapsing or warping during fabrication. Whether these support materials are removed chemically as in the case of many polymer additive manufacturing processes, or mechanically as in the case of (for example) Direct Metal Laser Sintering, the use of sacrificial material increases total material usage, build time, and time required in post-fabrication treatments. The goal of this work is to embed a minimum allowable self-supporting angle within the topology optimization framework such that designed components and structures may be manufactured without the use of support material. This is achieved through a series of projection operations that combine a local projection to enforce minimum length scale requirements and a support region projection to ensure a feature is adequately supported from below. The magnitude of the self-supporting angle is process dependent and is thus an input variable provided by the manufacturing or design engineer. The algorithm is demonstrated on standard minimum compliance topology optimization problems and solutions are shown to satisfy minimum length scale, overhang angle, and volume constraints, and are shown to be dependent on the allowable magnitudes of these constraints.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据