4.5 Article

A novel layered bismuth-based photocatalytic material LiBi3O4Cl2 with •OH and h+ as the active species for efficient photodegradation applications

期刊

SOLID STATE SCIENCES
卷 62, 期 -, 页码 43-49

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solidstatesciences.2016.10.015

关键词

Semiconductors; Layered structure; Photocatalysis; Azo dye; Phenol

资金

  1. National Natural Science Foundations of China [51672258, 51302251, 51572246]
  2. Fundamental Research Funds for the Central Universities [2652015296]

向作者/读者索取更多资源

Developing new photocatalysts is of significant importance for their potential environmental and energetic applications. Herein, a novel layered bismuth-based photocatalytic material LiBi3O4Cl2 was developed by a simple solid-state reaction. The morphology, microstructures and optical properties were investigated by XRD, SEM, TEM and DRS. The band gap of LiBi3O4Cl2 has been determined to be 3.35 eV, and its ECB and EVB were also estimated. The photocatalytic property of LiBi3O4Cl2 is surveyed by oxidative decomposition of rhodamine B (RhB), methyl orange (MO), methylene blue (MB) and phenol in aqueous solution. The results demonstrated that LiBi3O4Cl2 is an efficient UV light active photocatalyst, which can destroy the contaminants with irradiation. It is also more effective in degrading pollutants than the related layered bismuth-based photocatalyst Bi4NbO8Br. The photocatalysis mechanism is detailedly investigated by active species trapping measurement and terephthalic acid photoluminescence probing technique (TA-PL). It revealed that powerful hydroxyl radicals (center dot OH) and photogenerated holes (h(+)) are the two main active species and are responsible for the efficient degradation process. This study provides a new layered bismuth-based photocatalytic material for environmental and energetic applications. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据