4.5 Article

All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte

期刊

SOLID STATE IONICS
卷 296, 期 -, 页码 13-17

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ssi.2016.08.014

关键词

Solid-state battery; Thio-LISICON; Li-C anode; Layered-cathode

资金

  1. Samsung R&D Institute Japan
  2. Sapienza University of Rome (Chemistry Department)
  3. University of Ferrara (Department of Chemical and Pharmaceutical Sciences)

向作者/读者索取更多资源

The investigation of a lithium-carbon composite (Li-C) anode for application in all-solid-state battery, based on (Li2S)(0.75)-(P2S5)(0.25) glassy thio-LISICON electrolyte (Li2S-P2S5) is herein reported. The Li-C anode material is prepared by a mechanochemical, single step synthesis procedure. The Li-C/electrolyte interface is characterized in terms of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic cycling in comparison with lithium metal, in order to evaluate the improvements in terms of resistance and lithium stripping deposition ability. Li-C anode powder is pressed into a pellet together with the Li2S-P2S5 electrolyte and Li2ZrO3-coated, Li[Ni0.8Co0.15Al0.05]O-2 cathode powder (NCA-LZO), to form a new type of solid-state battery operating at room temperature. The Li-C/Li2S-P2S5/NCA-LZO battery shows remarkable cycling performance under galvanostatic conditions, particularly if compared to a more conventional configuration employing lithium metal as the anode. In addition, the all solid-state battery is characterized at various current densities, showing satisfactory rate capability. Under long term-cycling condition, performed at low current and prolonged to more than 250 days, the cell shows a stability over 100 cycles without fading. This is considered a remarkable result suggesting the solid-state cell here studied as suitable candidate-for efficient and safe energy storage. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据